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Abstract—The exact closed form solution is derived for the displacement of a thin elastic semicircular plate
acted upon by a concentrated force at an arbitrary point. It is assumed that the semicircular boundary of
the plate is clamped, and that its diametral boundary is simply supported. The derivation is accomplished in
the following manner. First, a singularity function is employed in order to obtain a closed form solution for
the displacement of the semicircular plate subject to a circumferential sinusoidal line load. Thus a solution
for arbitrary circumferential line loading of the plate is derived in the form of a Fourier series. Next, the
series solution for the particular case of a concentrated force is arranged into components which can be
summed in closed forms. Finally it has been shown that with the exception of the point of application of the
concentrated load, the obtained Green's function and its derivatives of any order are continuous in the
region. Numerical values of dimensioniess stress couples at various points of the region are presented for
three different positions of the concentrated force.

INTRODUCTION

The solution for the displacement of a circular plate subjected to a discontinuous load has been
derived in various investigations. One of the early investigations is due to Micheli[1]. Employ-
ing the method of inversion, he derived the closed form solution for the displacement of a
clamped circular plate acted upon by a concentrated force. Later on Melan [2] obtained an identical
solution with the use of bipolar coordinates. More recently Bassali[3], Dundurs and Lee(4), Yu
and Pan{5], Lee[6], Amon and Widera[7] and Williams and Brinson[8] investigated the cases of
certain plate problems involving concentrated forces. Most of the latter authors utilized
Michell's closed form expression in the analysis of their solutions.

In the present investigation the closed form Green’s function for a semicircular plate,
clamped around the curved edge and simply-supported along its diameter, is obtained. The
technique of solution is somewhat different from those employed by the previous investigators.

METHOD OF SOLUTION
Consider a semicircular plate with radius R simply supported along its diameter and
clamped around its curved edge. A set of dimensionless polar coordinates p = /R and 8 is
chosen such that its origin is at the center of the circle, and that the lines 8 =0, 8 = # coincide
with the diameter of the plate as shown in Fig. 1. The differential equation for the transverse
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Fig. 1. Semi-circular plate subject to a concentrated force. (pg, &) and (p, 8) are respectively the polar
coordinates of the positions of the concentrated load and a point in the region.
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displacement w in a thin elastic plate is given by
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in which D is the plate modulus, and p is the transverse load per unit area of the plate. For the
plate under consideration the edge conditions are:
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Here in relations (3) » is Poisson’s ratio. Now assume that the semicircular plate is acted upon
by the following sinusoidal line load on the circumferential line p = py<1:

Pp, 0)=pidlp—posinnd n=123,..., @

in which p* is a constant, and 8(p — py) is the unit impulse function. Relation (4) is inserted in
eqn (1) to yield

3
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A solution in the form

We = f,(p) sin nf ©

is now substituted in eqn (5) to give
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The complementary solution f,. of the differential equation (7) is derived in the usual way, and
its particular integral f,, is obtained with the known method of variation of parameters{9]. In
the derivation of f,, it is considered that the function must have continuous derivatives up to
the second order at p = py. These complementary and particular solutions are
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in which A, and C, are the unknown constants of integration, and

f1p=%e§[%(p’-m’)—mzlnﬁ]-%[ * 4:»«»)--t>o’(p2 m’)] } P py, } ®

flp=0 P<Po’
- BR[ L
¥ 4nD [ 2An+1)

- 1 "
Po a+lpn+2+2(n l)m +lp

—n+2
l -+ A+3 - } pzpo’ (10)
“n-1n" L “n+n P ]

fllp=0 psm, ﬂ=2,3,4,-..




Green's function for a semicircular plate 3

The general solution

(foc + fop) sin n6

which automatically satisfies the boundary conditions (3), is now substituted in the edge
conditions (2) in order to give
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In view of the principle of superposition the aforementioned solutions are combined in order to
yield the solution for an arbitrary line loading of the plate at p = py. Thus

w=ictfip)sind+ 3 (fuetfy)sinné. s

The constants p% contained in (15) are

r=— f p(0)sin nf db, (16)

in which §(6) is the intensity of the line load per unit length of the circumference at the radius
ro= Rpo. For the particular case of a uniform segmental line load with intensity j, whose
midpoint is at py, 8, and is confined in angle 6*, the following result is obtained:
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As 0* tends to zero while the total load pr,0* approaches P the limiting value of p* for the
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concentrated load case becomes

pﬁ=”§z}:p05inngos n=1y2a3"--- (18)

The value of p% in eqn (18) 1s now inserted in the previously obtained relations. After a few
simplifications the Fourier series form of the Green’s function is written:
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as they should be.
It has been shown previously[10-13] that series similar to those involved in relations (23) and
(24) have closed form sums:
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Since po < 1 it is obvious that terms in W, can be written to the forms given by identities (26).
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For example for p > py one writes:
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The other series in eqns (23) and (24) can be arranged in the same manner. Thus, in view of
identities (26) the Green’s function in closed form can be written as:
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It shall be shown now that in both regions p> p, and p<py W has the same functional
form. Thus, excluding the point of application of the concentrated load the value of W and its
derivatives of any order may be obtained in the region. It is easily seen from identities (26) that
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Considering eqn (30), it is noted that all terms in relations (28) and (29) with the exception of
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in (29) are identical. Utilizing relations (26) and (30), it is not too difficult to show that the
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expressions (31) and (32) are the same. Thus, the Green’s function given in relations (28) and
(29) may be written in the following single expression:
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NUMERICAL RESULTS
Numerical values of dimensionless stress couples:
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are obtained at several points of the region for three different positions of the concentrated
force P. In Tables 1 and 2 the values of M, and M, at various points of the clamped edge p = 1
are presented for the cases of py=0.5, 6=0.5rad., and py =04, 6, = 1rad. respectively. In
Figs. 2 and 3 the values of M, and M, are plotted vs 0 for different radii p = Rr for the case of
po=0.3, 6,=0.8rad.

CONCLUSION
The technique of singularity functions employed in this investigation can be utilized in order
to obtain a closed form solution for Poisson’s equation involving a source function in a
semicircular region subject to a homogeneous boundary condition. The method may also be
applied to the cases of a sector of a plate, and a circular cylindrical pane! subject to various
edge conditions. However, the derivation of closed form Green's functions for these cases, if
possible, may need more investigation.

Table 1. Non-dimensional values of stress couples Table 2. Non-dimensional values of stress couples
M, and M, at p=1 vs 8=k(x/12) for the case of M, and M, at p=1 vs 8 =k(nf12) for the case of
p0=0.5, 8o=05rad. and »=03. po=04, 6,=1rad. and » =03
k M, M, k M, M,

0 0 0 0 0 0

1 0.075845 0.022754 1 0.037560 0.011268
2 0.117507 0.035252 2 0.075000 0.022500
3 0.107893 0.032368 3 0.106201 0.031860
4 0.076533 0.022960 4 0.118812 0.035644
5 0.049841 0.014952 5 0.108058 0.032418
6 0.032207 0.009662 6 0.084710 0.025413
7 0.021072 0.006321 7 0.061114 0.018334
8 0.013871 0.004161 8 0.042134 0.012040
9 0.008968 0.002691 9 0.027819 0.008346
10 0.005388 0.001617 10 0.016868 0.005060
11 0.002533 0.000760 f1 0.007960 0.002388

12 0 0 12 0 0
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Fig. 2. Variation of M, vs 8 for various radii, for the case of py=0.3, 6,=08, »=03.
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Fig. 3. Variation of M, vs two different radii for the case of py=0.3, 8= 0.8, »=0.3,
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